Ela Some Majorization Inequalities for Coneigenvalues∗

نویسندگان

  • HANS DE STERCK
  • MINGHUA LIN
چکیده

A new notion of coneigenvalue was introduced by Ikramov in [Kh.D. Ikramov. On pseudo-eigenvalues and singular numbers of a complex square matrix (in Russian). Zap. Nauchn. Semin. POMI, 334:111–120, 2006.]. This paper presents some majorization inequalities for coneigenvalues, which extend some classical majorization relations for eigenvalues and singular values, and may serve as a basis for further investigations in this area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Majorization Inequalities for Coneigenvalues∗

A new notion of coneigenvalue was introduced by Ikramov in [On pseudo-eigenvalues and singular numbers of a complex square matrix, (in Russian), Zap. Nauchn. Semin. POMI 334 (2006), 111-120]. This paper presents some majorization inequalities for coneigenvalues, which extend some classical majorization relations for eigenvalues and singular values, and may serve as a basis for further investiga...

متن کامل

Ela Matrix Inequalities by Means of Embedding

In this expository study some basic matrix inequalities obtained by embedding bilinear forms 〈Ax, x〉 and 〈Ax, y〉 into 2 × 2 matrices are investigated. Many classical inequalities are reproved or refined by the proposed unified approach. Some inequalities involving the matrix absolute value |A| are given. A new proof of Ky Fan’s singular value majorization theorem is presented.

متن کامل

Ela a New Upper Bound for the Eigenvalues of the Continuous Algebraic Riccati Equation

By using majorization inequalities, we propose a new upper bound for summations of eigenvalues (including the trace) of the solution of the continuous algebraic Riccati equation. The bound extends some of the previous results under certain conditions. Finally, we give a numerical example to illustrate the effectiveness of our results.

متن کامل

More inequalities for Laplacian indices by way of majorization

The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...

متن کامل

Ela New Estimates for the Solution of the Lyapunov Matrix Differential Equation∗

In this paper, by using majorization inequalities, upper bounds on summations of eigenvalues (including the trace) of the solution for the Lyapunov matrix differential equation are obtained. In the limiting cases, the results reduce to bounds of the algebraic Lyapunov matrix equation. The effectiveness of the results are illustrated by numerical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012